
Efficient Fuzzy Type-Ahead Search in TASTIER

Department of Computer Science and Technology, Tsinghua National Laboratory for Information Science and Technology,
Tsinghua University, Beijing 100084, China
{liguoliang,fengjh}@tsinghua.edu.cn

wjn08@mails.tsinghua.edu.cn

Department of Computer Science, UC Irvine, CA 92697-3435, USA
{shengyuj,chenli}@ics.uci.edu

Abstract— TASTIER is a research project on the new
information-access paradigm called type-ahead search, in which
systems find answers to a keyword query on-the-fly as users
type in the query. In this paper we study how to support
fuzzy type-ahead search in TASTIER. Supporting fuzzy search
is important when users have limited knowledge about the exact
representation of the entities they are looking for, such as people
records in an online directory. We have developed and deployed
several such systems, some of which have been used by many
people on a daily basis. The systems received overwhelmingly
positive feedbacks from users due to their friendly interfaces
with the fuzzy-search feature. We describe the design and
implementation of the systems, and demonstrate several such
systems. We show that our efficient techniques can indeed allow
this search paradigm to scale on large amounts of data.

I. INTRODUCTION

Keyword search is important in information systems. When

using most Web search systems, a user types a complete query

and waits for results from the server. In the case where users

have limited knowledge about the data or do not know the

exact keywords of the entities they are looking for, often they

feel “left in the dark” when issuing queries, and have to use

a try-and-see approach for finding information. Many systems

are introducing various features to solve this problem. One of

the commonly used methods is autocomplete, which predicts a

word or phrase that the user may type in based on the partial

string the user has typed in. As an example, almost all the

major search engines nowadays automatically suggest possible

keyword queries as a user types in partial keywords.

One limitation of traditional autocomplete is that the system

treats a query with multiple keywords as a single string, thus

it does not do a full-text search on the data. For instance,

consider the search box on Apple.com, which allows auto-

complete search on Apple products. Although a keyword query

“itunes” can find a record “itunes wi-fi music store,” a

query “itunes music” cannot find this record (as of October

2009), simply because this query string as a whole does not

appear in the record.

Beyond treating a query as a single prefix: To address

this problem, recently a new type-ahead search paradigm

has emerged. Such a system treats the query as a set of

keywords, and finds answers with these keywords. It does a

full-text search on the underlying data “on the fly” as the

user types in query keywords letter by letter. In this way,

the user can get instant feedback after typing a partial query,

thus obtain more knowledge about the underlying data, which

helps the user formulate queries. Bast et al. [1], [2], [3]

described several techniques to do this type of search. An

example is the CompleteSearch system on DBLP1, which can

find publications that match multiple keywords in a query

interactively.

To study how to support efficient type-ahead search on

large amounts of data, we started a project called “TASTIER”,

which stands for “type-ahead search techniques in large

data sets”2. In this paper we focus on how to support fuzzy
type-ahead search in TASTIER [4]. With our techniques, a

type-ahead system can find answers with keywords similar
to the keywords in a query. It is based on the following

motivation. Often users can make mistakes when they type in

queries, especially when they have limited knowledge about

the data. For instance, a user looking for the publications by

Christos Faloutsos might not know the exact spelling of

the author name (Figure 1). Our techniques are also useful

when there are errors and inconsistencies even in the data

itself.

Query performance is a key issue in designing such a

fuzzy type-ahead search system, since there could be more

queries submitted to the system than a traditional system, and

each query should be answered within milliseconds. In this

paper we describe several such systems developed using our

techniques. We describe their design and implementation, and

use performance numbers to show that our techniques can

indeed make this search paradigm scale on large amounts of

data. Compared to our earlier publications, here we mainly

focus on the architecture and demonstrations of these systems.

A possible concern about these systems is their “disruptive-

ness,” i.e., each keystroke from the user could invoke a query

on the server. We address this concern using the following

facts. (1) “Search-as-you-type” interfaces have been widely

adopted in many search engines and Web services. (2) In the

database community, the recently deployed CompleteSearch

DBLP system with this feature has been well received. (3)

We have deployed several systems with similar features, and

1http : //dblp.mpi-inf.mpg.de/dblp-mirror/index.php
2tastier.cs.tsinghua.edu.cn and tastier.ics.uci.edu

Guoliang Li †, Shengyue Ji ‡, Chen Li ‡, Jiannan Wang †, Jianhua Feng †

 ‡

 †

978-1-4244-5446-4/10/$26.00 © 2010 IEEE ICDE Conference 20101105

(a) People Search on UCI Phonebook dataset (b) Publication Search on DBLP dataset

Fig. 1. Two screenshots of two fuzzy type-ahead search systems

received very positive feedbacks from users due to the friendly

interfaces and high efficiency. (4) If needed, we do not need

to submit a query to the server for each keystroke. In each

of our systems, the client sends a single query possibly after

multiple letters are typed in if these letters were typed in when

the server was still processing the previous query. We can

easily add a delay on the client side after a keystroke (using

JavaScript) for users who type in a query very fast. This feature

is especially useful when the user initially types in a query

quickly, and pauses to digest the information from the server.

A big advantage of this type-ahead interface is to allow users

to explore the data when formulating a query. Chaudhuri et

al. [5] studied how to find similar strings interactively as users

type in a query string, using an approach similar to that in [4].

II. SYSTEM ARCHITECTURE AND IMPLEMENTATION

Figure 2 illustrates the client-server architecture of a system

using our TASTIER techniques. We assume the underlying

data is a set of records residing on a server. Our method

can be extended to support type-ahead search on documents,

XML data [6], and relational databases [7]. The client is a

Web browser. A user uses the Web browser to send requests

to the server over the Internet and see the results from the

server. Each keystroke of the user could invoke a query, which

includes the current string the user has typed in. The browser

sends the query to the server. The server tokenizes the query

string, computes and returns to the user the best answers

ranked by their relevancy to the query. Figure 1 gives two

screenshots of fuzzy type-ahead search on a DBLP dataset

and a MEDLINE dataset in the medical domain.

For each query sent to the server, we treat the last keyword

as a partial keyword the user is completing, and other earlier

keywords as complete keywords.3 For each complete keyword,

we identify the keywords in the data that are similar to the

keyword. For the partial keyword, we identify its similar

3Our results generalize naturally to the case where each keyword is treated
as a prefix.

�������	
��
��

�����

����������

�
���� ������	������

�������	���	 ��!���

"��� #����

$�$%	#�&'����(
#��������

������

)�
��*	����
�

����	

�����+,
������
���
��
�����

���,
�

���
*
�

��
��
��	-�

���	
��
��

��������
.�"!����

��������

#�	����

�
��
.
	#
�	
��
��

Fig. 2. Fuzzy type-ahead search architecture

keywords as those in the data with a prefix similar to the

partial keyword. We use edit distance to quantify the similarity

between two words wi and wj , denoted as ed(wi, wj). The

edit distance between two words is the minimum number

of edit operations (i.e., insertion, deletion, and substitution)

of single characters needed to transform the first one to the

second. For example, ed(feloutose, faloutsos) = 3. We

say two keywords are similar if their edit distance is within

a given threshold δ. This threshold could be proportional

to the length of a query keyword to allow more errors for

longer keywords. We compute the relevant records that contain

a similar keyword for every keyword, and return the most

relevant records ranked by their relevancy to the query.

There are several components on the server side. The

Indexer component indexes the underlying data as a trie

structure with inverted lists of keywords in the leaf nodes. We

build a FastCGI module on the Web server to store the data

and indices. Different from a CGI module, the FastCGI server
module is loaded once when the Web server starts, and

continually handles queries without spawning more instances.

Therefore the server loads the data and indices from the disk

once, and then searches on the data in memory without access-

ing the disk. The FastCgi Server waits for queries from the

1106

client, and caches query results. The Server Cache component

checks whether the query can be answered using the cached

results. If not, the server incrementally answers the query by

using the cached information. For each query keyword, the

Fuzzy Prefix Finder incrementally computes its similar key-
words. The Multi-keyword Intersection module computes the

relevant answers that contain at least one similar keyword for

every input keyword. The Ranker module ranks the answers

to identify the top-k best answers for a constant k.

A. Server Design

We present the design of the server modules. We chose C++

to build the server module due to its high performance.

Indexer: It is an offline process that reads data from spec-

ified sources, tokenizes the data, and creates the following

structures: (1) a radix trie structure with inverted lists on the

corresponding leaf nodes; (2) a forward index that stores the

sorted list of keyword IDs for each record; (3) the data itself.

Each word w in the data corresponds to a unique path from

the root of the trie to a leaf node. Each node on the path

has a label of a character in w. The nodes with the same

parent are sorted by the node label in their alphabetical order.

For each leaf node, we store an inverted list of IDs of records

that contain the corresponding word. To improve performance,

optionally we can also maintain a forward index, which keeps

the sorted keyword IDs for each record.

Incremental Fuzzy Prefix Finder: It is part of the FastCGI

module. In the case of exact search, there exists only one

trie node corresponding to a partial keyword. However, to

support fuzzy search, we need to compute multiple prefixes

that are similar to the partial keyword, and retrieve their

corresponding complete keywords as the similar keywords.

The Incremental fuzzy prefix finder incrementally identifies

the prefixes in the dataset that are similar to the query

keywords. The idea of our method is to use prefix filtering.

That is, when the user types in one more letter after the partial

keyword, only the descendants of the trie nodes of similar

prefixes of the partial keyword could be potentially similar

prefixes of the new query keyword. We use this property to

incrementally compute the similar prefixes of a new query. For

a new query, the Incremental fuzzy prefix finder first looks

up similar prefixes of previous queries from the server cache,

computes similar prefixes for the current query incrementally,

and stores the results in the cache for future computation.

Multi-keyword Intersection: This module takes the sets of

similar keywords produced by the fuzzy prefix finder as input

(for multiple keywords), and computes the relevant answers,

which contain a matching similar keyword from each set. For

the partial keyword, there could be multiple similar prefixes,

and each similar partial prefix has multiple similar keywords.

We call the union of each keyword’s similar keywords’ in-

verted lists the union list for this keyword. A straightforward

method to identify the relevant answers is to first construct the

union list for every keyword, and then compute the intersection

of the union lists. However, it is rather expensive to construct

these union lists on-the-fly. Figure 3(a) illustrates an example

in which we want to answer query “li database vld”.

We can use forward lists to improve the performance of

computing the intersection. We choose the keyword with the

shortest union list based on estimation. We use the forward

index to check whether each candidate record on the shortest

union list contains similar keywords of every other query

keyword. If so, this record is an answer. To do this checking

efficiently, in the trie structure, each leaf node has a unique

keyword ID for the corresponding word. The keyword ID

is assigned in their pre-order on the trie. Each trie node

maintains the range of the keyword IDs in its subtrie. For

the keyword range of each similar prefix of other keywords,

for example, [s, �], we check whether the candidate record on

the shortest union list contains keywords in the range. We

first use a binary-search method to find the keyword ID on

the corresponding forward list. We get the smallest keyword

ID on the list that is larger than or equal to s. Then we check

whether the keyword ID is smaller than �. If so, this candidate

contains a keyword in the range. Figure 3(b) illustrates this

method using the running example.

Ranker: In order to compute high-quality results, we need to

use a good ranking function for the candidates. The function

should consider various factors such as the similarity between

a query keyword and its similar prefixes, the weight of each

keyword, term frequencies, inverse document frequencies,

importance of each record, etc. If the edit distance between

an input keyword and its similar prefixes dominates the other

parameters, we want to compute the answer with the smallest

edit distance first. If there are not enough top answers with

edit distance τ , we then compute answers with an edit distance

τ + 1, and so on.

Server Cache: After finding the answers to a query, we

cache the similar prefixes of each input keyword. Accordingly,

we can incrementally answer the subsequent keyword queries

using the cached similar prefixes. For the query with multiple

keywords, we also cache the relevant answers. If the user

types another keyword, we use the cached results to answer

the query by checking whether the cached results contain

the new keyword using the forward index. If there are too

many relevant records, we can just cache the highly relevant

ones. For each subsequent keyword, we first use the cached

records to compute the answer. If there are not enough

top answers, we continue to compute more answers for the

previous query and store the results in the cache. This “on-

demand” caching method can make sure each query can be

answered very efficiently, and we can cache results of a

query only if they are necessary. We can also postpone some

unnecessary computation when the user has more keystrokes.

In our design, not only the results but also the search context

at the termination point were saved for future computation.

Therefore, for a subsequent query, the system can use the

cached results of previous queries to answer it. If needed, the

system will also resume the search from the saved context

until top-k results are retrieved.

1107

vld

database

li

vld

databases

li li

lin

liu

lui luis

lu lu

database

vldb 6 7 8

3 4 5 6 7 8 9 10

1

3 4

5

7

1

1

3

4

5

7

7

keywords similar prefixes similar keywords lists relevant records

lin

liu

vld

database

li

vld

lin

lui

lu

database

6 7 8 7

keywords similar prefixes keyword range lists relevant records

[2, 2]

[4, 4]

[7, 7]

[6, 7]

2

8

2

7

8

2

8
li [3, 5]

liu [5, 5]

[8, 8]

Forward Index

(a) By intersecting union lists (b) By probing lists

Fig. 3. Two methods for answering a keyword query “li database vld”

B. Client and Communication Design

The client side contains HTML contents with JavaScript

code interpreted or executed in the browser. When the user

types in a query, if there is no pending request being processed

by the server the JavaScript code issues an AJAX query to the

server. Otherwise, it waits until the request has been answered.

This is to avoid the case where the user types so fast that the

system is overloaded. The query results are returned in a JSON

format, and the matched prefixes are returned along with the

records. We highlight matching prefixes.

III. DEMONSTRATIONS

We developed several systems based on our techniques of

fuzzy type-ahead search. We will demonstrate the following

systems. (1) People Search (http://psearch.ics.uci.edu/):

It searches on the UCI people directory. (2) Search

on DBLP authors (http://dblp.ics.uci.edu/authors/): It

searches in authors with DBLP publications. (3) DBLP

Search (http://dblp.ics.uci.edu/): It searches on more than

one million DBLP publications. (4) Search on URL

(http://tastier.cs.tsinghua.edu.cn/urlsearch/): It searches on

10M widely used URLs. In the experiments all queries can

be processed within 80 milliseconds per query. Our method

has a good scalability as illustrated in Figure 4 (See [4], [6],

[7] for more experimental results).

In addition to the feature of fuzzy-type-ahead search, we

will also demonstrate the following features.

Highlighting Similar Prefix: We will show how to highlight a

prefix in the results that best matches a keyword. Highlighting

is straightforward for the case of exact matching, since each

keyword must be a prefix of the matching keyword. For the

case of fuzzy matching, a query keyword may not be an exact

prefix of a similar keyword. Instead, the query keyword is just

similar to some prefixes of the similar keyword. Thus, there

can be multiple similar keywords to highlight. For example,

suppose a user types in “lus”, and there is a similar keyword

“luis”. Both prefixes “lui” and “luis” are similar to “lus”.

There are several ways to highlight “luis”, such as “luis” or

“luis”. We highlight the longest matched one (“luis”).

Using Synonyms: We can utilize a-priori knowledge about

synonyms to find relevant records. For example, in the do-

 0

 10

 20

 30

 40

 50

 60

 70

109876543210

Se
ar

ch
 T

im
e(

m
s)

of records (* million)

Edit-Distance Threshold=2
Edit-Distance Threshold=1
Edit-Distance Threshold=0

(a) URL dataset

 0

 10

 20

 30

 40

 50

 60

42.532.521.510.50

A
vg

 S
ea

rc
h

Ti
m

e(
m

s)

of records (* million)

Edit-Distance Threshold=2
Edit-Distance Threshold=1
Edit-Distance Threshold=0

(b) PubMed dataset

Fig. 4. Scalability

main of person names, “William = Bill” is a synonym.

Suppose in the underlying data, there is a person called

“William Kropp”. If a user types in “Bill Cropp”, we can

also find this person. To this end, on the trie, the node

corresponding to “Bill” has a link to the node corresponding

to “William”, and vise versa. When a user types in “Bill”,

in addition to retrieving the relevant records for “Bill”, we

also identify those of “William” following the link. In this

way, our method can be easily extended to utilize synonyms.

REFERENCES

[1] H. Bast and I. Weber, “Type less, find more: fast autocompletion search
with a succinct index,” in SIGIR, 2006, pp. 364–371.

[2] H. Bast, A. Chitea, F. M. Suchanek, and I. Weber, “Ester: efficient search
on text, entities, and relations,” in SIGIR, 2007, pp. 671–678.

[3] H. Bast and I. Weber, “The completesearch engine: Interactive, efficient,
and towards ir& db integration,” in CIDR, 2007, pp. 88–95.

[4] S. Ji, G. Li, C. Li, and J. Feng, “Interative fuzzy keyword search,” in
WWW 2009, 2009, pp. 371–380.

[5] S. Chaudhuri and R. Kaushik, “Extending autocompletion to tolerate
errors,” in SIGMOD, 2009, pp. 707–718.

[6] G. Li, J. Feng, and L. Zhou, “Interactive search in xml data,” in WWW,
2009, pp. 1063–1064.

[7] G. Li, S. Ji, C. Li, and J. Feng, “Efficient type-ahead search on relational
data: a tastier approach,” in SIGMOD, 2009, pp. 695–706.

1108

